Большее основание равнобедренной трапеции в три раза больше меньшего основания
Найти боковую сторону трапеции, если площадь трапеции равна   и трапеция описана около окружности

  • Пусть основания x, 3x.
    Трапеция описана, тогда суммы длин противоположных сторон равны, сумма боковых сторон x+3x=4x.
    Трапеция равнобедренная, тогда каждая боковая сторона 4x/2=2x.
    Опустим высоту из вершины к большему основанию. Получим прямоугольный треугольник с катетом x и гипотенузой 2x.
    Высоту в этом треугольнике можно найти по теореме Пифагора, h=x*sqrt(2^2-1^2)=x*sqrt(3)
    Площадь трапеции S = полусумме оснований * высота = (x + 3x)/2 * xsqrt(3) = 2x^2 * sqrt(3)
    S = 2x^2*sqrt(3)=sqrt(3); 2x^2=1; x=1/sqrt(2)
    Боковая сторона = 2x = 2/sqrt(2) = sqrt(2)