Точки K и L лежат по одну сторону от прямой a.Перпендикуляры KF и LT,проведенные кпрямой а,равны. Точка О-середина отрезка KT.Докажите,что угол OKL=углу OTF.

  • (5)  (6) . Сумма всех плоских углов всех граней тетраэдра равна сумме углов четырёх треугольников, т.е. 720o , поэтому, если суммы углов при каждой вершине равны, то каждая из этих сумм равна 180o . Обратное: (6)  (5) – очевидно. (4)  (8) . Если R – радиус описанной около тетраэдра сферы, r – радиус вписанной сферы и центры этих сфер совпадают (рис.1), то точка касания сферы с каждой гранью лежит лежит внутри этой грани и удалена от каждой вершины треугольника на расстояние  , т.е. является центром описанной около этого треугольника окружности радиуса  . (8)  (4) . В любом тетраэдре перпендикуляры, опущенные из центра O описанной сферы на грани (рис.1), попадают в центры описанных окружностей, и если радиусы этих окружностей равны R1 , то точка O одинаково удалена от всех граней (на расстояние  ), а т.к. все грани – остроугольные треугольники, то O – центр вписанной сферы. (8)  (6) . Если радиусы описанных окружностей граней ABC и DBC тетраэдра ABCD равны, то  BAC =  BDC , поскольку эти углы острые и опираются на равные дуги BC в равных окружностях (рис.2). Аналогично для всех пар смежных граней. Таким образом,  BDC +  CDA +  ADB =  BAC+ CBA + ACB = 180o.

See also: